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INTRODUCTION

Vitamin K is an essential vitamin. It is one of the 
four fat-soluble vitamins as well as vitamins A, D, 
E. Vitamin K, phylloquinone and menaquinone, 
includes some derivatives naftoquinonic soluble. 
Phylloquinone, vitamin K1, is the major type 
of dietary vitamin K, which is present in high 
amounts in green vegetables (spinach, cabbage, 
tomatoes). Menaquinone, vitamin K2, is produced 

by intestinal microbiota. The intestinal production 
of Vitamin K2 is usually enough to cover the daily 
requirements, and it is the main form stored in the 
liver (about 90% of the total). Another synthetic 
type of vitamin K is known as vitamins K3 or 
menadione, which is partially soluble in water. 
Menadione is a synthetic naphthoquinone without 
the isoprenoid side chain and biological activity, 
but it can be converted to active vitamin K2 by 
alkylation in vivo.
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biology. Without vitamin K, blood coagulation is impaired, and uncontrolled bleeding occurs. Low 
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is to examine how genetic variations influence responses to oral anticoagulant therapy. There is 
a large variability in response to anticoagulant therapy, and this can modify the benefit/risk ratio 
of drugs. This variability can be explained by clinical factors such as age, sex, demographic and 
environmental factors, inter- and intra-individual variability and genetic variants. In recent years, 
several genetic polymorphisms have been associated with variable biological responses to oral an-
ticoagulants. 

KEYWORDS: CYP2C9, VKORC1, CY4F2, Pharmacogenomics.

1GORI, Gruppo Oncologi Ricercatori Italiani, Onlus, Pordenone, Italy
2Italian Association of Pharmacogenomics and Molecular Diagnostics, Caserta, Italy
3Research Center CETAC, Caserta, Italy
4Dipartimento di Igiene, AOU Policlinico V. Emanuele, Catania, Italy 
5Department of Oncology-Haematology, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy

A. RAINONE1, S.R. SIESTO1, M. D’URSO2, N. MAZZARELLA2, 
S. PUGLIESE3, C. MANAGO4, A. STEFFAN5



2

GENETIC VARIANTS INFLUENCING VITAMIN K

vitamin K3 in radiotherapy with EGFR inhibitors 
erlotinib and cetuximab, and a case study on the 
usefulness of vitamin K3 (menadione) as against 
of pancreatic cancer.

VITAMIN K METABOLIC FATE 

Vitamin K was discovered fortuitously in 1929 as 
part of experiments on sterol metabolism and was 
immediately associated with blood coagulation. 
It was named vitamin K because of the German 
word “koagulation”.

The four vitamin K-dependent procoagulants 
(factor II or prothrombin, and factors VII, IX, and 
X) are serine proteases synthesized in the liver and 
then secreted into the circulation as inactive forms 
(zymogens)2. Their biologic activity is dependent 
on the normal complement of Gla residues, which 
are capable chelators of calcium ions. In the 
presence of Gla and calcium ions these proteins 
bind to the phospholipids of surface membrane 
of platelets and endothelial cells where, together 
with other cofactors, they form membrane-bound 
enzyme complexes. The zymogens of the four 
vitamin K-dependent clotting factors are cleaved 
to yield the active protease clotting factors3. 
The protein S and protein C (other vitamin 
K-dependent proteins) play a narrow role in the 
inhibition of coagulation. The role of protein C 
is to degrade phospholipid-bound of activated 
factors V and VIII in the presence of calcium. 
Protein S acts as a synergistic cofactor to protein 
C by enhancing the binding of activated protein 
C to negatively charged phospholipids. Another 
vitamin K-dependent protein described in human 
in 1984 is Protein Z4. Protein Z (PZ) is a vitamin 
K-dependent factor but it has no enzymatic 
activity. The structure of protein Z shows wide 
homology with many coagulation factors, such as 
VII, IX, X, and protein C. However, in contrast 
to other vitamin K-dependent coagulation factors, 
protein Z is not a serine protease because of 
the lack of the active centre in its amino acid 
sequence. It is a cofactor of a serpin, the protein 
Z-dependent protease inhibitor (ZPI), and the 
complex PZ/ZPI inhibits activated factor X on 
phospholipid surfaces5,6. Its plasma concentration 
spans a very wide range in normal individuals 
and its plasma concentration is greatly reduced 
during oral anticoagulation7. Despite conflicting 
results, a recent meta-analysis indicated that PZ 
deficiency could be a risk for venous and arterial 
thrombosis and early fetal loss8. However, these 
conclusions are drained from case-control studies 
of small size, constituting a significant limitation. 
Recently, it has been shown that PZ and/or ZPI are 

Vitamin K participates in the ordinary process 
of blood clotting, and its deficiency causes bleeding. 
The blood clotting requires the carboxylation of 
certain glutamate residues of the protein prothrombin 
into γ-carboxyprothrombin so that it can bind to 
other factors. Carboxylation is catalyzed by the 
enzyme y-glutamyl carboxylase (GGCX) which 
requires three co-substrates: reduced vitamin K, 
CO2, and O2. Carboxylation requires the abstraction 
of a proton from the 4-carbon of glutamate by 
reduced vitamin K and results in the conversion 
of vitamin K to vitamin K epoxide. The vitamin 
K epoxide must be recycled to vitamin K before 
being reused, and this reaction is catalyzed by the 
enzyme vitamin K epoxide reductase (VKOR). 

The four vitamin K-dependent procoagulants 
(prothrombin, and factors VII, IX, and X) are 
serine proteases that are synthesised in the liver and 
then secreted into the circulation as inactive forms 
(zymogens). The vitamin K in the diet, mainly 
as phylloquinone, is absorbed in the proximal 
intestine due to bile salts contained in pancreatic 
juice. At the level of the intestinal mucosa, vitamin 
K is incorporated into chylomicrons, secreted into 
the lymph and introduced into the bloodstream.

Circulating phylloquinone is associated with 
lipoprotein (LDL and VLDL), and only a small 
part is transported in free form. The liver is 
responsible for the reactivation of the vitamin 
by the action of the hepatic vitamin K epoxide 
reductase. So, if liver function is normal, the 
vitamin is effectively recovered and, since the 
intestinal microbiota synthesizes vitamin K, the 
daily requirements are satisfied.

Deficiencies can occur due to inadequate lipid 
absorption, intestinal dismicrobism and liver 
disease. Moreover during fetal development, 
placental transfer of vitamin K is low, leading to 
an exogenous deficiency of vitamin K in newborns 
secondary to low substrate intake. Newborns’ 
main dietary intake of vitamin K is either through 
breast milk or commercially available infant 
formula; breast milk contains significantly lower 
levels of vitamin K than does commercial formula. 
Therefore, insufficient dietary intake of vitamin 
K continues after birth, especially in exclusively 
breastfed infants. Recommended prophylaxis of 
vitamin K by injection in the newborn period 
replaces physiologically low vitamin K1 levels 
and decreases the risk of vitamin K deficiency 
associated hemorrhage1. In addition to these 
classical applications, recently vitamin K3 or 
menadione is used to protect the skin from the 
secondary toxicity caused by radiation therapy 
with EGFR inhibitors (Epidermal growth factor 
receptor). In this regard, we want to bring back two 
case studies. A case study of the effectiveness of 
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The difficulty in managing oral anticoagulants 
is strongly associated to the narrow therapeutic 
index range of Warfarin and acenocoumarol and 
to the great inter- and intra-individual variability 
in response to the treatment. This is estimated by 
measuring the International Normalized Ratio 
(INR), sensitive to clotting factors deficiencies 
(factors II, VII and IX, three of the VK-dependent 
clotting factors). Beside with demographic and 
environmental factors, genetic polymorphisms 
have also been identified, explaining the reason 
for the unpredictability in response to oral 
anticoagulant therapy14. To date, genetic variants 
influencing the vitamin K pathway include the key 
genes (Figure 1): a) vitamin K Epoxide reductase C1 
(VKORC1), b) cytochrome-P450 2C9 (CYP2C9); 
and c) cytochrome-P450 4F2 (CYP4F2).

The VKORC1 gene encodes a dithiol-dependent 
reductase that converts VK epoxide to VK quinone. 
This enzyme appears to be one of the target enzymes 
of oral anticoagulants (ie Warfarin). Irreversible 
inhibition of VKORC1 by oral anticoagulants blocks 
VK regeneration, resulting in non-functional pro-
coagulation factors. 

VKORC1 gene is located on chromosome 16 
and various polymorphisms have been described, 
most of them grouped into 4 major haplotypes. 
Among them, VKORC1*2 haplotype seems to be 
the most important in relation to the variability 
in response to oral anticoagulants and the risk of 
excessive bleeding15. 

The VKORC1*2 haplotype is labelled by the 
G-1639A polymorphism located in the promoter 
region of the VKORC1 gene, indicating the 
presence of a low amount of active VK (Table 
1). Several studies report that the VKORC1*2 
haplotype is related to the risk of bleeding in 
acenocoumarol average dose. Also, the C-1173T 
polymorphism in intron 1 of the VKORC1 gene 
is a representative for the VKORC1*2 haplotype, 
because it is in complete linkage disequilibrium 
with G-1639A polymorphisms. VKORC1 C-1173T 
polymorphism, whose T-allele frequency is 45% 
in Caucasians, meaning that almost half of the 
individuals belonging to this population could be at 
risk of sensitivity to acenocoumarol. The G-1639A 
polymorphism recorded a frequency of 57.8% and 
frequency of 42.2% for G and A allele, respectively. 
It seems that the VKORC1*2 haplotype has a greater 
contribution (40%) to the inter-individual and inter-
ethnic variability in response to acenocoumarol 
than the CYP2C9 variants. CYP2C9 variants have 
14% of contribution so the variability in response 
to acenocoumarol is over 50% determined by 
CYP2C9 and VKORC1 variants16. 

Rare mutations in VKORC1 gene relate with 
anticoagulant resistance. Therefore, we need higher 

synthesised by normal kidney and different cancer 
cells, suggesting that the complex PZ/ZPI might 
play a role in inhibiting the tissue deposition of 
fibrin9-11. The physiopathological consequences of 
these observations remain to be recognized. 

VITAMIN K AND ANTICOAGULATION

Warfarin, a coumarin derivative, produces an 
anticoagulant effect by interfering with the 
interconversion cyclic of vitamin K and its 2,3 
epoxide (vitamin K epoxide). Vitamin K is 
a cofactor for the carboxylation of glutamate 
residues to γ-carboxyglutamates (Gla) on the 
N-terminal regions of vitamin K-dependent 
proteins. By inhibiting the vitamin K conversion 
cycle, warfarin induces hepatic production of 
partially decarboxylated proteins with reduced 
coagulant activity12. Oral anticoagulant therapy is 
a widely used treatment of subjects with increased 
thrombosis risk; it is based on the daily intake of 
4-hydroxycoumarins (warfarin, acenocoumarol, 
phenprocoumon) which bind to the VKORC1 
enzyme and thus inhibit recycling of vitamin K. 
Consequently, the carboxylation of coagulation 
factors is inhibited resulting in the formation of 
inactive, non-carboxylated species also known as 
PIVKAs (proteins induced by vitamin K absence 
or antagonists). It was normally assumed that 
this was the only effect of oral anticoagulants. 
The discovery of new Gla-proteins not involved 
in blood coagulation initiated the search for side 
effects of oral anticoagulant treatment. Analysis 
of bone mineral density (BMD) in patients on 
long-term anticoagulation revealed that coumarin 
anticoagulants are associated with accelerated 
bone loss and low bone mass12. Therefore, long-
term use of oral anticoagulants is considered 
as a risk factor for developing osteoporosis. 
Similarly, impairment of MGP must be regarded 
as a risk factor for arterial calcification. Indeed, 
two independent studies have demonstrated that 
subjects on long-term anticoagulation have much 
more arterial and heart valve calcification than 
age- and sex-matched control population.

GENETIC VARIANTS INFLUENCING 
VITAMIN K PLASMA LEVELS 
AND THE ROLE OF ORAL 
ANTICOAGULANT THERAPY

The new era of pharmacogenomics, which integrates 
individual genetic profile with the pharmacokinetic 
and the pharmacodynamic of a drug, provide 
greater safety and efficacy in drug therapy13. 
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the mean daily maintenance dose in a study 
accounting 147 patients treated with warfarin: 
it is significantly lower in 1173TT patients (3.5 
mg; p<0.001) than in 1173CT patients (4.8 mg; 
p=0.002) and 1173CC patients (6.2 mg). Militaru 
et al19 have shown the influence of the c.-1639G>A 
polymorphism on the time to therapeutic INR.

doses of anticoagulant to win this resistance. The 
mentioned mutation is a G5417T transversion, 
which results in the substitution of an aspartate 
with a tyrosine at codon 36 (Asp36Tyr) of the 
VKORC117. 

D’Andrea et al18 have identified 1173C>T 
polymorphism as an independent factor influencing 

Fig. 1. H

TABLE 1. Clinically validated polymorphysms involved in vitamin K plasma levels.

Allele Nucleotide Exon Protein Activity compared with Reference 
 changes location variation wild type alleles

VKORC1*2 -1639A>G 5’UTR — Low-dose  warfarin Buzoianu AD 2013
VKORC1*2 -1173C>T Intron 1 — Low-dose warfarin D’Andrea G 2005
VKORC1 5417G>T Exon 1 Asp36Tyr Higher warfarin dose Loebstein R 2007
CYP2C9*2 430C>T Exon 3 Arg144Cys Decrease Higashi MK 2002,
     Di Francia R 2015,
     Militaru FC 2014
CYP2C9*3 1075A>C Exon 7 Ile359Leu Decrease 
CYP2C9*4 1076T>C Exon 7 Ile345Thr - 
CYP2C9*5 1080C>G Exon 7 Asp360Glu Decrease 
CYP2C9*6 818delA Exon 5 Null allele No activity 
CYP2C9*8 449G>A Exon 3 Arg150His Increase 
CYP2C9*9 752A>G Exon 5 His251Arg Decrease 
CYP2C9*11 1003C>T Exon 7 Arg335Trp Decrease 
CYP2C9*12 1465C>T Exon 9 Pro489Ser Decrease 
CYP4F2 1297G>A – Val433Met VK plasma level variabilty Hirai K 2015
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DISCUSSION

The management of VKA is complex and it depends 
on several mutations for CYP2C9 and VKORC1 
genes. The risk of bleeding and thromboembolic 
events is really tangible; there have been attempts 
to develop algorithms in order to establish the 
therapeutic dose that would protect the patient 
from these risks26. The algorithms developed to 
estimate the adequate therapeutic doses of warfarin, 
acenocoumarol or phenprocoumon are based on 
clinical (age, gender, body mass index liver failure, 
kidney failure); concomitant therapy (amiodarone, 
statins, antifungals, antibiotics, ACE inhibitors,) and 
on mutations that directly or indirectly influence the 
therapy with VKA (polymorphisms in the VKORC1, 
CYP2C9, CYP4F2, and GGCX genes)27. Instead, 
the algorithms establishing the stable dose of VK 
antagonists have shown good results in reducing the 
frequency of adverse reactions. To date, the literature 
isn’t still indicating about the cost-efficiency ratio. 
Furthermore, a detailed knowledge of pharmacology 
is a prerequisite for application in clinical practice, 
and physicians might find it difficult to interpret the 
clinical value of pharmacogenetic test results28.
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Several studies have shown a relationship between 
the genotype and the mean warfarin maintenance 
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71% or more in patients carrying 2C9*3/*3 
alleles (Table 1). Higashi et al22, in a retrospective 
study conducted on 185 patients receiving 
warfarin therapy, have revealed that the patients 
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is associated with a significantly increased 
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1.40 [95% CI: 1.03-1.90] p<0.001), with an 
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